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General constraints on cross sections deduced from surrogate reactions

W. Younes*
Lawrence Livermore National Laboratory, Livermore, CA 94551
(Dated: August 14, 2003)

Cross sections that cannot be measured in the laboratory, e.g. because the target lifetime is
too short, can be inferred indirectly from a different reaction forming the same compound system,
but with a more accessible beam/target combination (the “surrogate-reaction” technique). The
reactions share the same compound system and a common decay mechanism, but they involve
different formation processes. Therefore, an implicit constraint is imposed on the inferred cross
section deduced from the measured surrogate-reaction data, through the common decay mechanism.
In this paper, the mathematical consequences of this implicit constraint are investigated. General
formulas are derived for upper and lower bounds on the inferred cross section, estimated from
surrogate data in a procedure which does not require any modeling of the common decay process.
As an example, the formulas developed here are applied to the case of the 2*5U(n, f) cross section,
deduced from **U(t, pf) surrogate data. The calculated bounds are not very tight in this particular
case. However, by introducing a few qualitative assumptions about the physics of the fission process,
meaningful bounds on the deduced cross section are obtained. Upper and lower limits for the cross-
section ratio of the (n, f) reaction on the 2**U isomer at E, = 77 eV relative to the (n, f) reaction
on the ground state are also calculated. The generalization of this technique to other surrogate

reactions is discussed.

I. INTRODUCTION

In a recent paper [1], neutron-induced fission cross sec-
tions on targets of 22°U and 23°U™ have been deduced
from fission probabilities measured in the “surrogate”
234U(t, pf) reaction coupled with model calculations of
the n + 235U and 23*U(t, p) entrance channels. The cen-
tral idea underlying the surrogate technique in this case
is that both (n, f) and (¢, pf) reactions can be separated
into two sequential and independent steps: (i) a forma-
tion process, through the neutron-induced or (¢,p) re-
action respectively, leading to the same compound sys-
tem in both cases (i.e. 236U), and (ii) a decay process,
in this case fission, described by the same formalism in
both reactions. The separation of the reaction mecha-
nism into two distinct steps is not justified in general
if the compound system does not reach an equilibrated
state, e.g. in the case of a pre-equilibrium reaction. Fis-
sion is a collective phenomenon and therefore implies the
existence of an equilibrated system in the decay process.
Therefore, fission probabilities measured in the surrogate
(t,pf) experiment can be used to constrain the fission
model, which is common to both (n, f) and (¢,pf) reac-
tions, and the (n, f) cross section can be deduced.

This paper complements the investigation reported
in [1] by developing a formalism to impose upper and
lower bounds on the cross section deduced from the mea-
sured surrogate-reaction data. The limits are based solely
on the similarity between formation processes. In other
words, there is no need to model the decay process com-
mon to both reactions. However, making qualitative as-
sumptions about the decay channel can produce tighter
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bounds. In the case of the 235U(n, f) cross section de-
duced from fission probabilities measured in the surro-
gate 224U(t,pf) reaction, we show that additional qual-
itative assumptions that capture the gross features of
the fission model produce tight bounds on the deduced
235U(n, f) cross section. The results and techniques out-
lined here can be generalized to other surrogate measure-
ments, regardless of the formation or subsequent decay
processes, provided the reaction can be decomposed into
these two steps. The 23°U(n, f) example will be used
to illustrate the concepts. In the extreme case where a
surrogate reaction can be selected with formation proba-
bilities (e.g., as a function of spin and parity) very similar
to those of the reaction of interest, the formulas derived
here can produce meaningful bounds on the inferred cross
section, without the need to make any assumptions about
the decay mechanism.

II. CALCULATIONS

A general expression is derived here that quantifies
the extent to which the similarity between the neutron-
induced and (¢,p) formation processes constrains the
(n, f) cross section deduced from measured (t,pf) fis-
sion probabilities. Specific reactions are used here for
clarity, but the results obtained in this section can be
readily generalized. The details of the formalism used in
the surrogate technique can be found in [1], and only the
necessary equations are repeated here. Fission probabili-
ties, measured in the (¢,pf) reaction as a function of the
excitation energy FE, in the fissioning compound system,
can be decomposed as

Pp)(Ba) = > Py (J™) X Py(Ey, J7), (1)
J1r



where the summation extends over the spins and pari-
ties J™ populated by the (t,p) reaction, Py ) (J™) is the
calculated formation probability, and Py(E,,J™) is the
reaction-independent fission probability, determined us-
ing a statistical model of the fission process. The cor-
responding equation for the (n, f) probability below the
threshold for the (n,n'f) reaction (i.e., second-chance
fission) is

= 3" Pon(Ea, ) x Py(Ea, J7), (2)
Jﬂ

Pln,p) (E

where Pon(En,J™) is the compound-nucleus formation
probability for the neutron-induced reaction, as a func-
tion of J™ and the neutron energy E, = E, - B, and
where B, is the neutron binding energy. The (n, f) cross
section (0(y,f)) is then obtained by multiplying the prob-
ability P, )(Ey,) in Eq. (2) by the calculated neutron-
induced formation cross section oon(E,,) [4]

U(n,f) (En) = U'CN(En) X P(n,f) (En) (3)

The formation probabilities for the (¢,p) and neutron-
induced reactions, and the fission probabilities must be
modeled in Egs. (1) and (2). The surrogate-reaction data
provide significant constraints on the fission model. The
probability P ,¢) (E;) in the left-hand side of Eq. (1) is
measured in the surrogate-reaction experiment, and the
parameters of the fission model are adjusted to produce
the optimal set of fission probabilities, Pr(E,,J™), that
are independent of the formation process [5].

The same fission probabilities Py(E,,J™) are shared
by Egs. (1) and (2). Therefore, if the formation proba-
bilities P ,)(J™) and Pon(Ey,, J™) are specified and the
probability P, f)( ¢) in Eq. (1) is measured, the prob-
ability Py, 5 (Er) in Eq. (2) and the corresponding cross
section oy, 5)(Ey) are restricted to a limited range of val-
ues, even if explicit Py(E,, J™) values are not specified.
In the extreme case where the (¢, p) and neutron-induced
reactions populate the same states in the compound sys-
tem, i.e. when Py, (J™) = Pon(En,J™) for all J™ at
a given E,, Egs. (1) and (2) imply that P, ¢ (E,) =
Py pp)(Ey), regardless of the values of Py(E,,J™) calcu-
lated using a fission model. In practice, the (¢,p) and
neutron-induced reaction processes do not produce iden-
tical fissioning systems, and we will now derive explicit
formulas that quantify the bounds on the deduced cross
section, based entirely on the similarity between the for-
mation processes. Although we are using the 235U(n, f)
cross section as an example, the results derived here are
more general. Therefore, we adopt the following nota-
tion to conceal the explicit dependence on the reaction
mechanism and specific quantum numbers involved,

pi = Pon(En, J™), (4a)

q; = P(t,p) (Jﬂ)a (4b)

€ = Pf (Ewa JW); (4C)

P =P, 5)(E

Z Di€i, (4d)

Q = Pupp) (B

Z qi€i, (46)

defined at a given energy E, (or, equivalently, at excita-
tion energy E, in the compound system), and where the
index i stands for the spins and parities J™ of N states
populated in the compound system. In mathematical
terms, the problem then is to determine the set of values
{€;} that maximizes (minimizes) the quantity P, given
a set of values for {p;}, {¢;}, and @, and subject to the
constraints

N
Z qi€; Q) (53‘)
=1
0<e <1, (5b)
N
0<p;<1and Zpi—l (5¢)
i=1
N
0<g<land ) g =1 (5d)
i=1

This is a standard problem in linear programming,
solved numerically by the “simplex algorithm” [2].
Eq. (5) defines a convex polyhedron or “simplex” in the
coordinate space of the ¢; variables, and it can be shown
that the maximizing (minimizing) solution for any lin-
ear function P of the ¢;, is always one of the vertices of
the simplex. The simplex algorithm is an efficient way
of finding the solution vertex numerically. Instead of re-
sorting immediately to the numerical algorithm, we will
first derive the desired upper and lower limit on P in a
more useful, explicit form by applying the constraints in
Eq. 5.

The derivation requires that a distinction be made be-
tween those states that are populated by the surrogate
reaction (i.e., for which ¢; # 0) and those that are not
(i.e., for which ¢; = 0). For example, the (¢,p) reac-
tion only populates natural-parity states (e.g., 01, 17,
2%, etc.) under the assumption that the transferred neu-
tron pair is in a state with relative angular momentum
£ = 0. For clarity, the index ¢ will refer to states for
which ¢; # 0, and the primed index i’ will denote states
for which g = 0. Let n be the number of states with



g # 0 (i.e., i =1,--- ,n), and m the number of states
with gz # 0 (i.e., ¢’ = 1,--- ,m), so that m +n = N.
For those n states with ¢; # 0, the one-to-one mapping
between the indices ¢ and the spin and parity J™ can be

i=k+1

where j is largest index for which Ef;ll g < Q, and k is
the smallest index for which 77", ¢; < Q.

In the case of the (n, f) cross section, for example,
Eq. (6) gives upper and lower bounds on the (n, f) reac-
tion probability, P, f), which is related to the cross sec-
tion by Eq. (3). The bounds in Eq. (6) depend only on
the formation probabilities (p; and g;), and the measured
reaction probability for the surrogate (¢, pf) reaction (Q),
but not on the fission probabilities ;.

III. DISCUSSION

In the limit where the formation processes for the reac-
tion of interest and the surrogate reaction become iden-
tical, p; = ¢; and the sum over i’ in Eq. (6) disappears.
In this special case, the upper and lower limits in Eq. (6)
clearly converge to the same value, @), as expected. In
the case of the 235U(n, f) cross section, simulated from
measured 23*U(t,pf) data, the formation processes are
markedly different, and therefore Eq. (6) does not pro-
vide a tight constraint, as shown in Fig. 1.

The bounds in Eq. (6) can be further constrained if
a few, qualitative assumptions are made about the fis-
sion probabilities Py (E;, J™) in Egs. (1) and (2). Stated
another way, we will isolate those features of the fission
model that are sufficient to reproduce the general behav-
ior of the deduced cross section. In [1], a fairly sophisti-
cated fission model based on the Bohr transition-state hy-
pothesis [3] was used to calculate the P¢(E,, J™) values.
The hypothesis that low-energy nuclear fission proceeds
through states with well-defined quantum numbers was
incorporated into a double-humped fission-barrier model.
Discrete and continuum states were used in the first well,
and on top of each barrier in the model. In this paper, the
calculated fission probabilities, Py(E,, J™), are analyzed
to reveal their pertinent features. These probabilities are
reproduced from [1] in Fig. 2 as a function of excitation
energy in the compound system. The P;(E,,J™) curves
can be partitioned into three groups. The probabilities
of fission from J™ = 0~ and 1% compound states are
the smallest. As was explained in [1], this is due to the
fact that no 0~ states, and only two 1T states can be con-
structed below the pairing gaps at the fission saddles. By
contrast, the J™ = 0%, 2+, 4%, 6+, and 8 members of

> p,-+’q’—:<Q— 3 q,-> <P<

chosen freely. In particular, if that mapping is chosen
such that the ratios p;/g; are ordered in a descending se-

quence (i.e., p1/q1 > p2/g2 > -+ - Pn/qn), it can be shown
(see Appendix A) that P is bounded by

i'=1
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FIG. 1: Fission probability for the 23*U(n, f) reaction, plotted
as a function of incident neutron energy. The dotted lines
show the bounds imposed by Eq. (6), and the filled circles are
the exact calculations performed using the model in [1].

the lowest K = 0" band provide open paths to the fission
process starting at the lowest incident neutron energies.
The corresponding values of Py(E,,J™) are large. The
remaining group of fission probabilities lies somewhere
between these extremes.

In the spirit of Eq. (6), we seek to constrain P, 7 (Ey)
assuming that the P¢(E,, J™) can be grouped as in Fig. 2,
but without any further assumptions about the underly-
ing physics. Using the notation introduced above, we
write Pp(E;,J™) = & for the members of the first K =
0% band at the saddle, Pf(E,,07) = Pf(E;,1%) = €3,
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FIG. 2: Fission probabilities Pf(E,, J™), calculated in [1] and
plotted for different spins and parities as a function of excita-
tion energy. The curves have been classified into three groups,
shown as solid, dashed, and dot-dashed lines, and labeled by
the appropriate spins in the legend. In particular, the lowest
probability curves correspond to fission from the 0~ and 17
states. The vertical dotted line marks the neutron binding
energy for 235U, B,,.

and Pf(E,,J™) = € for all other J™. Thus, the problem
at hand becomes that of extremizing P = )", pi€;, sub-
ject to the constraints in Eq. (5), and with the additional
condition

0<eg<ea<eac<l (M)

and where only three values of ¢;, namely €7, €5, and €3
are allowed. Were it not for the group ordering imposed
by constraints in Eq. (7), the solution would be given
simply by Eq. (6). Instead, the simplex algorithm is used
to provide a numerical solution. The upper and lower
limits for the 235U(n, f) probability are plotted in Fig. 3
against the exact result obtained using the model in [1].
Clearly, the additional constraints imposed by grouping
the fission probabilities as in Fig. 2 produce tight bounds
on the P, r)(E,) values, but no details about the fission
model beyond the conditions in Eq. (7) were required.
It is interesting to note that the exact calculation in
Fig. 3 reaches and follows the upper bound for E, 2
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FIG. 3: Bounds (dashed lines) imposed on the ***U(n, f) fis-
sion probability by the constraints in Egs. (5) and (7). The
points represent the exact calculation, and are the same as
in Fig. 1. The dotted lines are the bounds obtained by using
Eq. (6), as in Fig. 1.

1.5 MeV. Specific details of the underlying physics con-
spire to produce this effect. In the exact calculation [1]
for incident neutron energies E,, 2> 1.5 MeV, the com-
pound system, 236U, is populated at sufficiently-high ex-
citation energies that the open decay channels (i.e., -
decay, neutron emission, and fission) are dominated by
statistical processes. As discussed in [1], the probabilities
P;(E,, J™) become independent of J™, and tend to the
same value required by Eq. (1), namely the measured
(t,pf) probability Q. Substitution of P¢(E,,J™) = @
into Eq. (2) shows that P, s)(E,) also becomes equal to
Q. On the other hand, the neutron-induced reaction on
the J™ = 7/2~ ground state of 225U does not significantly
populate the 0~ and 17 states in the compound system.
(The 0~ and 17 states play a more important role in the
neutron-induced fission of the J™ = 1/2% isomeric level
in 235U, discussed below.) Furthermore, these unnatural-
parity states are not populated at all in the (¢, p) reaction.
Therefore, the 0~ and 11 states can safely be ignored
in calculating bounds for the 23°U ground-state (n, f)
probability. The three-group model represented in Fig. 2
reduces effectively to a two-group model. Given the nu-
merical values of the population probabilities for the two
remaining groups, it can be shown that the upper limit



for P is necessarily (). Therefore, both the exact calcu-
lation and the upper bound converge to the same value,
as is apparent in Fig. 3.

Finally, the same technique can be applied to derive
bounds for the probability of fission in neutron-induced
fission of the 7 ~ 38-minute isomer at E, = 77 eV in
2357J. This problem can be approached in the same way
as the case of the (m, f) reaction on the 233U ground
state discussed above. However, there is a subtle point
here that can be used to improve the estimated bounds.
Knowledge of the probability for the (n, f) reaction on
the 235U ground state provides an additional constraint
for the 235U™ case, because both share the same set of
probabilities Py (E,, J™). Therefore, bounds on the ratio
of the fission probability for a 2?>U™ target, relative to
the fission probability for a 235U target are calculated.
According to Eq. (3), this ratio is identical to the ratio
of the corresponding (n, f) cross sections. Extending the
notation in Eq. (4), the fission probability for P, r)(Ey)

for a 235U target is labeled P(™)  and the corresponding
(m)

[

formation probabilities are denoted by p
wish to calculate bounds for the ratio

Thus, we

p(m) _ Eip,(m)éi ®
P E,’piei ’

subject to the constraints in Eqgs. (5) and (7). The sim-
plex algorithm cannot be directly applied because the
ratio in Eq. (8) is not a linear function of the variables
€;. However, a variation of the method, whereby P is
increased in small steps between the bounds in Fig. 3,
and the simplex algorithm is used to extremize P(™ at
each step is feasible. The extremal values of the ratio ob-
tained from all the incremental steps at each excitation
energy are plotted in Fig. 4 against the exact values de-
termined in [1]. At first glance, the bounds do not seem
to be very constraining, but it is worth noting that the
quantity plotted in Fig. 4 is a ratio of probabilities and
can, a priori, assume any value between 0 and oo. In par-
ticular, Fig. 4 shows that the probability of fission from
the isomer never exceeds the probability of fission from
the ground state. This result is a direct consequence of
the formation probabilities used and the constraints in
Eq. (7), all other details of the fission model are irrele-
vant.

IV. CONCLUSION

Upper and lower bounds have been extracted for
the neutron-induced fission probability for a 233U tar-
get using measured surrogate 234U(t,pf) data. The
bounds were deduced without modeling the fission pro-
cess. Tighter bounds were obtained by further order-
ing the fission probabilities from states with different
spins and parities, based on gross properties of the fission
mechanism. The same approach was used to constrain
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FIG. 4: Bounds (dashed lines) imposed on the isomer-to-
ground-state ratio for *U by the constraints in Eqgs. (5) and
(7). This probability ratio is identically equal to the ratio of
corresponding cross sections. The points represent the exact
calculation [1].

the ratio of the isomer-to-ground-state fission cross sec-
tions in 23%U. The methods discussed above can be ap-
plied to a wide range of surrogate-reaction studies. The
result in Eq. (6) only requires a description of the forma-
tion process, and not of the subsequent decay. In cases
where the formation probabilities are more alike than in
the (¢,p) and neutron-induced reactions discussed here,
Eq. (6) may be sufficient to provide tight bounds on the
reaction cross section of interest, without the need to de-
velop even a coarse model of the decay process. This
may be the case for one-nucleon transfer reactions such
as (d,p), (*He,d), (*He, ), etc. Otherwise, simple qual-
itative features of the decay model, such as the ordering
of decay probabilities, can be used to produce meaningful
constraints.
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APPENDIX A: PROOF OF EQ. (6)

The proof is divided into two cases, depending on
whether we can assume the all the ¢; (withi =1,--- | N)
are nonzero or not.

1. Casel: ¢; #0

For convenience, we define

N
Pmin = Z pi+ <Q Z %)
i=k+1 i=k+1
j-1 , -
Pmaw = ZPi*‘])—J_(Q—ZQi)a (A]-)
i=1 % i=1

where the indices i are ordered such that p1 / G >p2/g2 >

-+ Pn/dn, j is largest index for which Ez 19 <@, and
k is the smallest index for which Zi:k 112 < Q. It can
be seen that Pp,., is a special value of P = ). p;e; for
which the ¢; have been chosen as

€6 = €2=-'-=6]‘_1El
1 =
o= 2(0-5a)
9 i=1
€j+1 = €j+2="'=6NEO. (AQ)

Direct substitution shows that the ¢; in Eq. (A2) satisfy
Eq. (5a), as required. These ¢; also satisfy Eq. (5b). This
is clearly the casefori=1,--- ,j—land ¢ =j+1,---,N.
For €;, we recall that the j was chosen such that it is the
largest index for which Ef;ll g; < Q. Mathematically,
this means

(A3)

j-1 J
D a<Q<) g
=1 =1

Therefore we can write (using the fact that g; # 0 in the
present, case)

J
Q< Z%’
i=1
j—1
= Q- Z%’ <4gj
i=1

1 =
= 6jE_.<Q_Zqi> <1
9 i=1

(A4)

Similarly, we write

qu<Q:>€J:_<Q Z%>>0 (A5)

i=1 i=1

and therefore 0 < ¢; < 1, consistent with Eq. (5b).

We are now in a position to show that the set of ¢;
in Eq. (A2) yields the largest possible value of P, i.e.
P < P4, for any choice of the ¢;. First we isolate
the €; term in P = ) . p;e; and impose the constraint

> gi€i = Q of Eq. (5a) to write
P = pjej+ ) pici
i#j
- & Q- aici | +Y_piei
G ij ij
-804y (B-B)ge. o
% iz N

We rewrite Py, defined in Eq. (A1) in a similar form:

Proe = 2 + 2 (”’ Blg. @
gq;j qi q;
Next, we calculate the difference P — Py, 44
pi D Sm op
P Pooe = 3 (BB g3 (2o,
it a  gj - \& 4
Jj—1 ) ]
- Z<&_&)qi(e,._1)
: q; q;
+ Z ( )%61 (A8)
i=j+1 q

Now recall that we have ordered the ratios p;/¢; such
that p1/q1 > p2/g2 > --- > pn/qn, and that 0 < ¢; < 1,
0 < ¢; <1 (Egs. (5b) and (5d), respectively). Therefore,
both sums in Eq. (A8) are less than or equal to zero.
Thus we have P — P4, < 0,0r P < Pgs-

To prove that P > P,,;,, we note that P,,;, is a special
case of P =) . p;e; with the following values for the ¢;

61:€2:..-:6j_150
1 < =
K i=k+1
€j+l — 6j+2 == €N = 1. (Ag)

where k is the smallest index for which 7, ., ¢; < Q.
A proof similar to the one for P < Py, follows.



2. Case 2: ¢;#0, gy =0

In this case, the values of ¢y do not affect the sum
> i€ + >y qrer = @Q in Eq. (5a). Therefore, we are
free to choose any values of 0 < ey < 1, and still satisfy
the constraint in Eq. (5a). In particular, to maximize P,
we choose €; = 1, and to minimize it we choose €;; = 0.
Thus we have the general result

n n
PminE Zpi'i‘&(Q_ ZQZ)
=kt 1 r i=kt1
j—1 i j—1 m
Pmaw = sz + q_] (Q - Z%) + sz’:(AlO)
i=1 J i=1 i'=1

where the summations over ¢ now cover the indices for
which ¢; # 0.
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In practice, the measured P ,f)(E:) values could not be
exactly reproduced, due to limitations in the fission model.
A renormalization procedure, described in [1] has been
used to compensate for these limitations.





